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Quick Estimation of Kinetic Parameters for a 
Compartment with Exponential Absorption Rate and 
First-Order Elimination Rate 

C. D. THRON 

Abstract Two methods are presented for the quick estimation of ki- 
netic parameters for a compartment with an exponential absorption rate 
and a first-order elimination rate. The first method is by direct compu- 
tation from the observed levels of substance in the compartment at times 
t ,  2t, and 3t, where t is arbitrary. The second method uses a numerical 
table to estimate the parameters from the observed peak level, the time 
of the peak level (or the time when the level rises to half of the peak level), 
and the time when the level has decline& to half of its peak value. Some 
approximation equations also are given. 
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If the rate of absorption of a substance into an initially 
empty, well-stirred compartment declines exponentially 
with time and the rate of elimination is first order, then the 
quantity or concentration, y, of the substance in the 
compartment is a function of time, t ,  of the general 
form: 

where C, 121, and k2 are constants. The method usually 
recommended for estimating these constants from ex- 
perimental data is a graphical procedure known as “peel- 
ing,” “feathering,” or the “method of residuals’’ (1, pp. 
281-292), complemented by least-squares adjustment by 
computer (1,2). The graphical procedure can be comput- 
erized, and these methods are entirely satisfactory if 
suitable computer programs and services are available. 
Without a computer, however, these methods are time 
consuming and are quite unwieldy for preliminary evalu- 
ation of data, rough comparison of published reports, and 
double-checking calculations. 

This report describes methods of rapid, direct compu- 
tation of C, k l ,  and k z  from experimental data; these 
methods may be useful for applications not requiring high 
accuracy or careful statistical weighting. 

THEORY AND DISCUSSION 

Estimation from y Values at t ,  2 t, and 3 t-In principle, any three 
data points will determine the three parameters. In practice, however, 
the resulting three simultaneous equations cannot always be solved for 

the parameters. Therefore, direct computation of the parameters requires 
a suitable selection of data points. 

Let t be any convenient time and let y I ,  y2, and y3 be the observed 
levels a t  t ,2t, and 3t, respectively. Equation 1 gives: 

where j = 1,2, or 3. For the solution of these three simultaneous equa- 
tions, let: 

Then: 

and: 

k l  = - log, [ (A + r )  ] 
t Y1 2 

kz = - - 1 log, [ (A - r )  ] 
t Y1 2 

(Eq. 3) 

(Eq. 4) 

(Eq. 5) 

(Eq. 6) 

The labeling of the constants k 1 and k2  is entirely arbitrary. The con- 
ventions adopted here regarding the algebraic sign of r (Eqs. 3-5) assign 
the label k2 to the larger of the two. If r = 0, then k 1 = k z  = k and Eq. 1 
takes the limiting form: 

y = Cte-kr (Eq. 7) 

If the quantity under the radical in Eq. 3 is negative, the data are in- 
consistent with the model underlying Eq. 1. 

Equations 3-6 become simpler if t is selected on the rising limb of the 
y curve (Fig. 1) in such a way that 2t intercepts the falling limb at just 
the same level; i.e., y2 = y1. Then the limiting case (kl = k z  = k, Eq. 7) 
will havey3 = (3/4)y1 (cf., Eq. 3). 

The use of Eqs. 3-6 may be illustrated by the example of Fig. 1. The 
steps for estimating the parameters are: 

1. From the curve of Fig. 1, read the values of y at  t = 2,4, and 6 yi 
= 1.85, y2 = 1.43, and y3 = 1.02, respectively. 

2. Compute r = d(1.85)(1.02)/(1.43)2 - 0.75 = 0.416 and y d y i  = 
1.43h.85 = 0.773. 

3. Compute kl = -(‘h)loge[O.773(O.5 + 0.416)] = 0.17, k z  = -(%I 
log,[0.773(0.5 - 0.416)] = 1.4, and C = fDko/V = (1.85)(1.4 - 0.17)/ 
[2(0.773)(0.416)] = 3.5. 

Like any method of fitting the curve of Fig. 1, this analysis does not 
tell which of the two constants, kl (the smaller) or kz (the larger), is 
identified with k,  or k,, nor does it evaluate the several factors of the 
coefficient C. 

Estimation from Peak Level, ym, Time of Peak Level, t,, and 
Time of Decline to Half of Peak Level, th2-Let y ,  be the peak level, 
t ,  be the time of the peak level, t h ,  be the time when the rising level first 
reaches y m / 2 ,  and t h ?  be the time (after t,) when the declining level 
reaches ym/2 (Fig. 1). The theoretical equations (Eq. 1) for these ob- 
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Figure 1-Plasma concentration-time profile for a one-compartment 
system with absorption rate constant k, = 1.4, elimination rate constant 
k, = 0.17, volume of distribution V = 40, dose D = 100, and fraction 
absorbed f = I .  The plasma concentration y obeys the equation y = 
(fDk,/V) [exp(-k,t) - exp(-k,t)]/(k, - ke), where tis time (cf., Ref. 2, 
p. 292). The dashed lines indicate the peak leuel ym, the time of the peak 
level t,, the time thl when the rising level first reaches yJ2, and the 
time t h p  when the declining leuel reaches y,/2. 

servable values cannot be solved for the constants C, k l ,  and kz, so a 
numerical table is used (Table I). This table is based on the fact that if 
the value of the ratio thz/tm is known, the normalized parameters kllt, ,  
kzlt,, and Ct,/y,  are entirely determined; from these values and the 
observed y m  and t,, the constants k l ,  kz, and C are easily computed. The 
table also includes the ratio th2/thl in case the available value oft, is more 
uncertain than that of th l .  

Computations for Table I were done as follows. Let K = kzlk 1. As before, 

Table I-Normalized Parameters for a Compartment with 
Exponential Absorption and First-Order Elimination= 

2.68b 
2.70 
2.75 
2.80 
2.85 
2.90 
2.95 
3.00 
3.10 
3.20 
3.30 
3.40 
3.50 
3.60 
3.70 
3.80 
3.90 
4.00 
4.10 
4.20 

1.000 
0.840 
0.7 26 
0.657 
0.607 
0.567 
0.534 
0.505 
0.459 
0.422 
0.392 
0.367 
0.345 
0.326 
0.309 
0.294 
0.281 
0.269 
0.258 
0.248 

1.00 
1.18 
1.34 
1.45 
1.53 
1.61 
1.68 
1.74 
1.86 
1.95 
2.04 
2.12 
2.20 
2.26 
2.33 
2.39 
2.44 
2.50 
2.55 
2.60 

2 .72c  
2.73 
2.76 
2.79 
2.82 
2.84 
2.87 
2.89 
2.94 
2.98 
3.02 
3.06 
3.10 
3.14 
3.17 
3.20 
3.24 
3.27 
3.30 
3.33 

11.5d 
11.7 
12.0 
12.3 
12.6 
12.9 
13.3 
13.6 
14.2 
14.8 
15.5 
16.1 
16.7 
17.4 
18.0 
18.7 
19.3 
20.0 
20.6 
21.3 -~ - 

4.30 0.239 2.64 3.36 22.0 
4.40 0.230 2.69 3.38 22.6 
4.50 0.222 2.73 3.41 23.3 
4.60 0.215 2.77 3.44 24.0 
4.70 0.208 2.81 3.46 24.7 
4.80 0.202 2.85 3.49 25.3 
4.90 0.196 2.89 3.51 26.0 
5.00 0.190 2.92 3.53 26.7 
5.20 0.180 2.99 3.58 28.1 
5.40 0.171 3.06 3.62 29.5 

Table I-(Continued) 

t h  / t m  I tm kz tm C t m  / Y m  th l t h ,  

5.60 
5.80 
6.00 
6.20 
6.40 
6.60 
6.80 
7.00 
7.20 
7.40 
7.60 
7.80 
8.00 
8.20 
8.40 
8.60 
8.80 
9.00 
9.20 
9.40 
9.60 
9.80 

10.00 
10.5 
11.0 
11.5 
12.0 
12.5 
13.0 
13.5 
14.0 
14.5 
15.0 
15.5 
16.0 
16.5 
17.0 
17.5 
18.0 
18.5 
19.0 
19.5 
20.0 
21.0 
22.0 
23.0 
24.0 
25.0 

0.162 
0.155 
0.148 
0.142 
0.136 
0.131 
0.126 
0.121 
0.117 
0.113 
0.110 
0.106 
0.103 
0.100 
0.0972 
0.0945 
0.0920 
0.0896 
0.0873 
0.0851 
0.0831 
0.0811 
0.0792 
0.0749 
0.0710 
0.0676 
0.0644 
0.0615 
0.0589 
0.0565 
0.0543 
0.0522 
0.0503 
0.0485 
0.0469 
0.0453 
0.0439 
0.0426 
0.0413 
0.040 1 
0.0390 
0.0379 
0.0369 
0.0350 
0.0333 
0.0318 
0.0304 
0.0291 

3.12 
3.18. 
3.23 
3.28 
3.34 
3.38 
3.43 
3.48 
3.52 
3.56 
3.60 
3.64 
3.68 
3.71 
3.75 
3.78 
3.82 
3.85 
3.88 
3.91 
3.94 
3.97 
4.00 
4.07 
4.13 
4.20 
4.26 
4.31 
4.36 
4.42 
4.46 
4.51 
4.56 
4.60 
4.64 
4.68 
4.72 
4.76 
4.80 
4.83 
4.87 
4.90 
4.93 
5.00 
5.06 
5.11 
5.17 
5.22 

3.67 
3.71 
3.75 
3.78 
3.82 
3.86 
3.89 
3.92 
3.96 
3.99 
4.02 
4.05 
4.08 
4.11 
4.13 
4.16 
4.19 
4.21 
4.24 
4.26 
4.28 
4.31 
4.33 
4.39 
4.44 
4.49 
4.54 
4.58 
4.63 
4.67 
4.71 
4.75 
4.79 
4.83 
4.86 
4.90 
4.93 
4.97 
5.00 
5.03 
5.06 
5.09 
5.12 
5.17 
5.23 
5.28 
5.33 
5.37 

30.9 
32.3 
33.7 
35.1 
36.6 
38.0 
39.5 
41.0 
42.4 
43.9 
45.4 
46.9 
48.4 
50.0 
51.5 
53.0 
54.6 
56.1 
57.7 
59.2 
60.8 
62.4 
64.0 
67.9 
72.0 
76.0 
80.1 
84.2 
88.4 
92.6 
96.8 

10 1 
105 
110 
114 
118 
123 
127 
132 
136 
140 
14 5 
149 
159 
168 
177 
186 
196 

a F o r  values of t h 2 / t m  larger than those shown here, the following 
equations give estimates accurate to within 5%: 

If thl  is not available, k z t m  can be estimated from the recursion equa 
tion k l ( i + l ) t m  = k l t m  - l o s ( k , t m )  + l o e ( k i t , ) ,  where k2itm and 
kz( i+ , ) tm are the rth and ( i+ l ) th  successive approximations to k2tm,  
and a suitable starting estimate, k,, t , ,  is k l t m  - log , (k , tm)  or jus t  
- l o g , ( k l t m ) . ~  bThe value is 2.67835. A value of th, / tm smaller than 
this is inconsistent with the model o n  which Eq. 1 is based. C 2.71828 = 
e. d T h e  value is 11.54466. 

the convention is adopted that k z  2 k l  and, therefore, K 1 1. When t = 
t,, dyldt = 0 and Eqs. 1 and 7 give: 

(Eq. 8a)  

k i t ,  = 1 (Eq. 8b) 

kzt ,  = Kklt, (Eq. 9) 
Equations 8a, 86, and 9 are used to substitute for kl and kz in Eqs. 1 

and: 

and 7 to obtain: 
- ( t / t m ) / ( * - l )  - K - [ K ( t / t m ) l / ( x - l )  

(Eq. 10a) _ -  Y - K  
Y m  x-l/h-l)  - K - * / ( x - l l  
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L = (t/t,)e-“L/‘m)-ll ( K  = 1) (Eq. 1Oc) 
Y m  

Let = th,/tm and 82 = th$tm; then, from Eqs. 10b and 1Oc: 

_ -  1 - & - ( “ - I )  ( K  = 1) (Eq. l l b )  
2 

for 8 = /I1 or 82. An iterative method [a one-dimensional modified version 
of the flexible simplex method described by Himmelblau (3 ) ]  was used 
to compute 8 for a given K or K for a given 8 from Eqs. l l a  and l l b .  (For 
a given K ,  the algorithm employed converged either to 81 or 82, depending 
on the initial estimate.) For large K and 8 values, the computation of the 
right-hand side of Eqs. l l a  and l l b  produced intermediate values too 
large for the computer. To avoid these overflows, an alternative equation 
was used when K was greater than 50 and 8 was greater than 9: 

(Eq. 12) 

This equation is derived from Eqs. 1 l a  and l l b  by replacing the term KO 

- 1 by K” and multiplying out the numerator. 
Finally, Eqs. 8a, 86, and 9 are used to substitute for kl and k~ in Eqs. 

1 and 7 to obtain: 

( K  # 1)  (Eq. 13a) 

( K  = 1) (Eq. 136) 

The use of Table I may be illustrated by the example of Fig. 1. The 

1. From the curve of Fig. 1, read t ,  = 1.7 and y m  = 1.88. 
2. Compute ym/2  = 0.94. 
3. From the curve of Fig. 1, read t h z  = 6.5 (where y = 0.94). 
4. Compute thz/tm = 3.8. 
5. From Table I, read hit, = 0.294, hltm = 2.39, and Ctm/ym = 

3.20. 
6. Compute kl  = 0.29411.7 = 0.17, kn = 2.39h.7 = 1.4, and C = fDk,/V 

= (3.20)(1.88)/1.7 = 3.5. 
If thl can be determined more accurately than t,, the first four steps 

can be modified as follows: 
1. From the curve of Fig. 1, read y m  = 1.88. 
2. Compute ym/2 = 0.94. 
3. From the curve of Fig. 1, read th = 0.35 and th = 6.5. 
4. Compute th2/thl = 18.6. 

Ctm - K‘/(*-’)lOgeK 
Ym K -  1 
_ _  

Ctm - 
Yrn 
_ -  

steps in estimating the parameters are: 

Since this value of thz/thl lies between the tabulated values, interpolation 
might be done. For most purposes, however, it is sufficiently accurate to 
take the normalized parameter values corresponding to the closest tab- 
ulated value of th2/thI,  i.e., 18.7. 

The accuracy of this method is obviously limited by the accuracy of 
determination oft, and t h z  or th These parameters, especially t ,  and 

th,, are likely to be quite inaccurately known when only a small number 
of data points are available, as is commonly the case. The values of k I and 
k2 are especially uncertain when the ratio thz/tm is less than 3 or 3.5, 
because in this region the dependence of kltm and kz t ,  on th&m is quite 
steep (Table I). These limitations on accuracy must be kept in mind when 
this method is used. 

Approximation Equations-Attempts to find simple approximation 
equations for k I,  k z ,  and C in terms oft,, th th2, and y ,  yielded only 
two that were both simple and reasonably accurate: 

C = (10ge2)yrnlth~ = 0.693ymlth (Eq. 14) 
and: 

k l  = (10ge2)/(th2 - 1.5tm) 5 0.693/(thz - .1.5tm) (Eq. 15) 
Equation 14 gives slightly high values, accurate to within 5% if th 2/tm > 
4.7 and to within 10% otherwise. Equation 15 gives values within f 5 %  
if tholtm > 3.15 and within 10% if thzltm > 2.95; but for lower values of 
th2/tm, i t  gives values of k l  that are as much as 41% too low. 

Equation 15 may be convenient for estimating the elimination rate 
constant from plasma level-time curves following oral administration, 
assuming the elimination rate constant is smaller than the absorption 
rate constant. It is essentially the familiar equation for intravenous ad- 
ministration, kl = (10ge2) / th2,  corrected for gradual absorption by the 
term -1.5tm. 

The parameter k z  can be estimated from k l  and t ,  by the recursion 
equation given in footnote a to Table I. Several iterations may be nec- 
essary if k l t ,  > 0.1, and a programmable calculator is convenient for 
doing these calculations. 

CONCLUSIONS 

The described methods appear to be the best solutions to the problem 
of getting rough estimates of the parameters of Eq. 1 with minimum 
computation. These methods do not verify that the data in question do 
in fact obey Eq. 1; therefore, these methods could be misleading if applied 
to data that do not obey Eq. 1. If such misapplicat.ions are avoided, 
however, these methods may prove useful, especially for preliminary 
evaluation of data, rough comparison of published reports, and double- 
checking calculations. 
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